If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+30x-18=0
a = 24; b = 30; c = -18;
Δ = b2-4ac
Δ = 302-4·24·(-18)
Δ = 2628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2628}=\sqrt{36*73}=\sqrt{36}*\sqrt{73}=6\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{73}}{2*24}=\frac{-30-6\sqrt{73}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{73}}{2*24}=\frac{-30+6\sqrt{73}}{48} $
| 3+{x}{-2}=10 | | 9(1+e)=45 | | 7(9n+2)=22 | | 3n=8-175 | | 10−6t=7t−3 | | 89+57=(5x-6) | | -31=5(4s-9) | | -8f=-7f−9 | | 11x+160=-9-2x | | 1+3i/6+3i=0 | | 8m=7m+4 | | Xx.13=604.40 | | 2x4=19 | | 4r=6+10r | | -13=2+x | | −2p+5=23 | | -5u=-6u+8 | | x/2=34000 | | Yx.13=604.40 | | 245=5x^2+70x | | -8|5-2x|=-56 | | x(x/2)=34000 | | 8(6-2d)=17 | | -8=-x/9+2 | | 11t−6t=20 | | 8x-27=6x+39=180 | | (|7p+4|/8)=3 | | 354.85=180+0.65x | | 3(x+5)=5x+12 | | 14p-12p=6 | | 5z-7+4=-24 | | 4b=390 |